Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane.

نویسندگان

  • María A Llamas
  • José J Rodríguez-Herva
  • Robert E W Hancock
  • Wilbert Bitter
  • Jan Tommassen
  • Juan L Ramos
چکیده

Proteins of the Tol-Pal (Tol-OprL) system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. Here we describe an additional role for this system in the transport of various carbon sources across the cytoplasmic membrane. Growth of Pseudomonas putida tol-oprL mutant strains in minimal medium with glycerol, fructose, or arginine was impaired, and the growth rate with succinate, proline, or sucrose as the carbon source was lower than the growth rate of the parental strain. Assays with radiolabeled substrates revealed that the rates of uptake of these compounds by mutant cells were lower than the rates of uptake by the wild-type strain. The pattern and amount of outer membrane protein in the P. putida tol-oprL mutants were not changed, suggesting that the transport defect was not in the outer membrane. Consistently, the uptake of radiolabeled glucose and glycerol in spheroplasts was defective in the P. putida tol-oprL mutant strains, suggesting that there was a defect at the cytoplasmic membrane level. Generation of a proton motive force appeared to be unaffected in these mutants. To rule out the possibility that the uptake defect was due to a lack of specific transporter proteins, the PutP symporter was overproduced, but this overproduction did not enhance proline uptake in the tol-oprL mutants. These results suggest that the Tol-OprL system is necessary for appropriate functioning of certain uptake systems at the level of the cytoplasmic membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional organization of the Pseudomonas putida tol-oprL genes.

Proteins of the Tol system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. In Pseudomonas putida, the seven genes, orf1, tolQ, tolR, tolA, tolB, oprL, and orf2, which encode the proteins of this complex, are clustered in a 5.8-kb region of chromosomal DNA. Analysis of polar mutations, reverse transcriptase PCR assays, and transcripti...

متن کامل

Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability.

The outer membrane of gram-negative bacteria functions as a permeability barrier that protects cells against a large number of antibacterial agents. OprL protein of Pseudomonas putida has been shown to be crucial to maintain the stability of this cell component (J. J. Rodríguez-Herva, M.-I. Ramos-González, and J. L. Ramos. J. Bacteriol. 178:1699-1706, 1996). In the present study we cloned and m...

متن کامل

The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake.

The upper operon of the TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes involved in the conversion of toluene and xylenes to their carboxylic acid derivatives. The last gene of the upper operon, xylN, encodes a 465-amino-acid polypeptide which exhibits significant sequence similarity to FadL, an outer membrane protein involved in fatty acid transport in Escherichia coli. To anal...

متن کامل

RegA, iron, and growth phase regulate expression of the Pseudomonas aeruginosa tol-oprL gene cluster.

The tol-oprL region in Pseudomonas aeruginosa appears to be involved in pyocin uptake and required for cell viability. The complete nucleotide sequences of the tolQRA and oprL genes as well as the incomplete sequences of tolB and orf2 have been previously reported. In addition, the sequence of a P. aeruginosa iron-regulated gene (pig6) has been described and found to share homology with an open...

متن کامل

Outer Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance

Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 16  شماره 

صفحات  -

تاریخ انتشار 2003